Секвенций исчисление - Definition. Was ist Секвенций исчисление
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Секвенций исчисление - definition

КЛАСС ЛОГИЧЕСКИХ ИСЧИСЛЕНИЙ, ИСПОЛЬЗУЮЩИХ ДРЕВОВИДНЫЙ ВЫВОД И СЕКВЕНЦИИ (УСЛОВНЫЕ СУЖДЕНИЯ)
Секвенция (логика); Секвенция (теория доказательств); Цедент (исчисление секвенций); Секвенций исчисление; Просеквенция

Секвенций исчисление      
(позднелатинское sequentia - последовательность, следствие)

секвенциальные исчисления, исчисления способов заключений, модификации понятия логического исчисления (См. Исчисление), в которых основными объектами преобразования являются не формулы, а т. н. секвенции, т. е. выражения вида A1,..., AlB1,..., Bm, где → аналогична знаку выводимости, A1,..., Al и B1,..., Bm - произвольные формулы; первые - образующие антецедент секвенции, вторые - её сукцедент. При l, m ≥ 1 секвенция A1,..., AlB1,... Bm интерпретируется как формула

A1&... &A1 B1 ∨...∨ Bm.

(& - знак конъюнкции, ⊃ - импликации, ∨ - дизъюнкции, см. Логические операции), секвенция с пустым антецедентом интерпретируется как истина, а секвенция с пустым сукцедентом - как ложь (и, следовательно, секвенция →, состоящая из одной стрелки, - как противоречие). Аксиомами (исходными секвенциями) в С. и. являются все секвенции вида С С (и только они). Правила вывода делятся на т. н. структурные и логические. Первые кодифицируют допустимые изменения "формульного состава" антецедента и сукцедента, вторые - введение в секвенции различных логических символов. Структурные правила - это "уточнение" (добавление произвольной формулы к антецеденту или сукцеденту), "сокращение" (вычёркивание повторяющихся формул), перестановка произвольных формул в антецеденте или сукцеденте, а также "сечение"

(латинскими буквами обозначаются произвольные формулы, греческими - строчки формул, разделённых запятыми, над чертой пишется посылка правила, под чертой - заключение). Логические правила вывода имеют для секвенциального классического исчисления высказываний (См. Исчисление высказываний) следующий вид:

; ;

.

Если и структурные, и логические правила вывода ограничить условием, согласно которому в сукцеденте каждой секвенции должно быть не более одной формулы, то получим секвенциальное интуиционистское исчисление высказываний: это условие оказывается достаточным для невыводимости в С. и. исключенного третьего принципа (См. Исключённого третьего принцип) (а также закона снятия двойного отрицания). Секвенциальное Исчисление предикатов получается присоединением к предыдущим правилам ещё двух пар правил введения Кванторов общности и существования.

Основной результат немецкого математика Г. Генцена состоит в установлении возможности приведения каждого вывода в С. и. к "нормальной форме", не содержащей применений правила сечения и тем самым представляющей в некотором смысле "прямой" вывод. Из многочисленных приложений этого результата особенно важны доказательства непротиворечивости (См. Непротиворечивость) арифметических формальных систем, использующие математическую технику, выходящую за рамки гильбертовского финитизма (см. Аксиоматический метод, Метаматематика), и тем самым обходящие в известном смысле трудности, обусловленные теоремой К. Гёделя (См. Гёдель) о неполноте формальной арифметики. Эта же основная теорема Генцена лежит в основе большинства алгоритмов выводимости для логических и логико-математических исчислений (см. Разрешения проблема), чем и обусловлена исключительная важность С. и. для интенсивно развивающихся исследований в области машинного поиска логического вывода, являющихся важным примером моделирования (См. Моделирование) интеллектуальной деятельности человека.

Лит.: Генцен Г., Исследования логических выводов, пер. с нем., в кн.: Математическая теория логического вывода, М, 1967, с. 9-74; его же. Непротиворечивость чистой теории чисел, там же, с. 77-153; его же, Новое изложение доказательства непротиворечивости для чистой теории чисел, там же, с. 154-90; Карри Х. Б Основания математической логики. пер. с англ., М., 1969, гл. 5С, 6B, 7B и 8B; Алгорифм машинного поиска естественного логического вывода в исчислении высказываний, М. - Л., 1965.

Типизированное лямбда-исчисление         
Типизированное ламбда-исчисление; Лямбда-исчисление с типами
Типизированное лямбда-исчисление — это версия лямбда-исчисления, в которой лямбда-термам приписываются специальные синтаксические метки, называемые типами. Допустимы различные наборы правил конструирования и приписывания таких меток, они порождают различные системы типизации.
Лямбда-исчисление         
Λ-исчисление; Ламбда-исчисление; Β-редукция; Бета-редукция; Α-эквивалентность; Альфа-эквивалентность
Ля́мбда-исчисле́ние (λ-исчисление) — формальная система, разработанная американским математиком Алонзо Чёрчем для формализации и анализа понятия вычислимости.

Wikipedia

Исчисление секвенций

Исчисление секвенций — вариант логических исчислений, использующий для доказательства утверждений не произвольные цепочки тавтологий, а последовательности условных суждений — секвенций. Наиболее известные исчисления секвенций — L K {\displaystyle \mathbf {LK} } и L J {\displaystyle \mathbf {LJ} } для классического и интуиционистского исчислений предикатов — построены Генценом в 1934 году, позднее сформулированы секвенциальные варианты для широкого класса прикладных исчислений (арифметики, анализа), теорий типов, неклассических логик.

В секвенциальном подходе вместо широких наборов аксиом используются развитые системы правил вывода, а доказательство ведётся в форме дерева вывода; по этому признаку (наряду с системами натурального вывода) исчисления секвенций относятся к генценовскому типу, в противоположность аксиоматическим гильбертовским исчислениям, в которых при развитом наборе аксиом количество правил вывода сведено к минимуму.

Основное свойство секвенциальной формы — симметричное устройство, обеспечивающее удобство доказательства устранимости сечений, и, как следствие, исчисления секвенций являются основными исследуемыми системами в теории доказательств.